a1=1 an+1=an/an+2 求an
2个回答
展开全部
你这题若是a(n+1)=3a(n)/a(n+2),则没法求解
若是a(n+1)=3a(n)/[a(n)+2],则可以求解
由
a(n+1)=3a(n)/[a(n)+2]
可得:
1/a(n+1)
=
[a(n)+2]/[3a(n)]
=
1/3
+
(2/3)[1/a(n)]
即:1/a(n+1)
-
1
=
1/3
+
(2/3)[1/a(n)]
-
1
=
(2/3)[1/a(n)]
-
缉范光既叱焕癸唯含沥2/3
=
(2/3)[1/a(n)
-
1]
数列
{
1
-
1/a(n)
}
满足:[1
-
1/a(n+1)]
/
[1
-
1/a(n)]
=
2/3
1
-
1/a(n)
=
[1
-
1/a(1)](2/3)^(n-1)
由于:1
-
1/a(1)
=
1-1/3=2/3
所以:1
-
1/a(n)
=
(2/3)^n
1/a(n)
=
1-(2/3)^n
所以:a(n)
=
1/[1-(2/3)^n]
=
(3^n)/(3^n-2^n)
若是a(n+1)=3a(n)/[a(n)+2],则可以求解
由
a(n+1)=3a(n)/[a(n)+2]
可得:
1/a(n+1)
=
[a(n)+2]/[3a(n)]
=
1/3
+
(2/3)[1/a(n)]
即:1/a(n+1)
-
1
=
1/3
+
(2/3)[1/a(n)]
-
1
=
(2/3)[1/a(n)]
-
缉范光既叱焕癸唯含沥2/3
=
(2/3)[1/a(n)
-
1]
数列
{
1
-
1/a(n)
}
满足:[1
-
1/a(n+1)]
/
[1
-
1/a(n)]
=
2/3
1
-
1/a(n)
=
[1
-
1/a(1)](2/3)^(n-1)
由于:1
-
1/a(1)
=
1-1/3=2/3
所以:1
-
1/a(n)
=
(2/3)^n
1/a(n)
=
1-(2/3)^n
所以:a(n)
=
1/[1-(2/3)^n]
=
(3^n)/(3^n-2^n)
展开全部
a[n+1]=a[n]/(a[n]
+
2)
是不是这样子?
那么两边同时取倒数。
1/a[n+1]=[an+2]/an=1+2/an
1/a[n+1]
+1
==2+2/an=2{1/an
+1}
所以形如1/an
+1是一个等比数列,公比是2.
第一项1/1+1=2
所以1+1/an
=2*2^[n-1]=2^n
an=1/[2^n-1]
当n=1时,也满足,所以
an=1/[2^n-1]
2的n次方减去1的差的倒数
满意的话请采纳O(∩_∩)O~
+
2)
是不是这样子?
那么两边同时取倒数。
1/a[n+1]=[an+2]/an=1+2/an
1/a[n+1]
+1
==2+2/an=2{1/an
+1}
所以形如1/an
+1是一个等比数列,公比是2.
第一项1/1+1=2
所以1+1/an
=2*2^[n-1]=2^n
an=1/[2^n-1]
当n=1时,也满足,所以
an=1/[2^n-1]
2的n次方减去1的差的倒数
满意的话请采纳O(∩_∩)O~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询