一道初二数学题?
如图所示,现有正方形FECA、JHGE、HIBD.点A、C、G、D、B在同一直线上.点K、L、N、O分别为FJ、JI、CG、GD中点,点P为正方形JHGE几何中心.连接K...
如图所示,现有正方形FECA、JHGE、HIBD.点A、C、G、D、B在同一直线上. 点K、L、N、O分别为FJ、JI、CG、GD中点,点P为正方形JHGE几何中心. 连接KL、KP、LP、KN、LO.
(1)已知S正方形FECA=16,S正方形HIBD=8.
①S五边形JFABI=______
②S△KLP=______
(2)过点P作直线L⊥AB.
求证:直线L过KL中点.
(3)③若相邻两个正方形能够绕其公共顶点(E、H)旋转(即点A、C、G、D、B不一定在同一直线上),旋转过程中每个正方形除其现有公共顶点(E、H)外(此公共点仍然存在),其他部分不相互接触. 试分别求出线段KN、LO长度取值范围.(直接写出答案)
④求KN+LO最大值.(说明理由) 展开
(1)已知S正方形FECA=16,S正方形HIBD=8.
①S五边形JFABI=______
②S△KLP=______
(2)过点P作直线L⊥AB.
求证:直线L过KL中点.
(3)③若相邻两个正方形能够绕其公共顶点(E、H)旋转(即点A、C、G、D、B不一定在同一直线上),旋转过程中每个正方形除其现有公共顶点(E、H)外(此公共点仍然存在),其他部分不相互接触. 试分别求出线段KN、LO长度取值范围.(直接写出答案)
④求KN+LO最大值.(说明理由) 展开
22个回答
展开全部
1.m²+n²+2mn-2m-2n+1=0=(m+n)²-2(m+n)+1=(m+n-1)²=0,
m+n=1,
(m+n)²=1
2.一个因式是x+2,另一个因式是x-3,
k=-6
m+n=1,
(m+n)²=1
2.一个因式是x+2,另一个因式是x-3,
k=-6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
10,5(因为两对角线的一半和短边组成等边三角形)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |