如何用中值定理证明x/(1+x)<ln(1+x)<x,x>0?

 我来答
滚雪球的秘密
高粉答主

2019-05-10 · 醉心答题,欢迎关注
知道大有可为答主
回答量:4152
采纳率:100%
帮助的人:105万
展开全部

不等式两边同除以x,因为x大于0,不等号方向不变;即

1/(1+x)<ln(1+x)/x<1;

又ln1=0;观察中间发现,这个刚好是拉格朗日中值定理的形式

即存在c∈(1,1+x),使得

ln(1+x)/x=【ln(1+x)-ln1】/x=1/c;

因为c∈(1,1+x);

所以1/(1+x)<1/c<1得证。

扩展资料:

拉格朗日中值定理是微分中值定理的核心,其他中值定理是拉格朗日中值定理的特殊情况和推广,它是微分学应用的桥梁,在理论和实际中具有极高的研究价值。

几何意义

若连续曲线在两点间的每一点处都有不垂直于x轴的切线,则曲线在A,B间至少存在1点,使得该曲线在P点的切线与割线AB平行。

运动学意义

对于曲线运动在任意一个运动过程中至少存在一个位置(或一个时刻)的瞬时速率等于这个过程中的平均速率。

拉格朗日中值定理在柯西的微积分理论系统中占有重要的地位。可利用拉格朗日中值定理对洛必达法则进行严格的证明,并研究泰勒公式的余项。从柯西起,微分中值定理就成为研究函数的重要工具和微分学的重要组成部分。

禹英飙纳哲
2019-04-07 · TA获得超过3.2万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:943万
展开全部
去f=ln(1+x),f的导数就是1(1+x),这个导数是在正实数上是单调递减的。分别取0点和x点做拉格朗日中值定理的端点,列出比例式子,而这个等于0到x之间的某个点的导数。由导数的单调性知道,这个值比在0点的导数小,也就是比1小,比在x出的导数大,也就是比1(1+x)大。公式太难打了,我已经说明白了。你写出来变形一下就可以了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式