在△ABC中,角A=60°,b=1,其面积为根号3,则(a+b+c)\(sinA+sinB+sinC)=?
1个回答
展开全部
两种办法:
在△ABC中
A=60°
b=1
S△ABC=√3,求:(a+b+c)/(sinA+sinB+sinC)=?
(a+b+c)/(sinA+sinB+sinC)=2R
SΔ=(1/2)bcsinA--->c=2SΔ/(bsinA)=4
--->a2=b2+c2-2bccosA=13
--->(a+b+c)/(sinA+sinB+sinC)
=
2R
=
a/sinA
=
√13/(√3/2)
=2√39/3
因为S△ABC=bcsinA/2=[1*c*(√3/2)]/2=√3
所以,c=4
根据余弦定理有:a^=b^+c^-2bccosA=1+16-2*1*4*(1/2)=13
所以,a=√13
根据正弦定理a/sinA=b/sinB=c/sinC,则:
(a+b+c)/(sinA+sinB+sinC)=a/sinA=(√13)/(√3/2)=2√39/3
在△ABC中
A=60°
b=1
S△ABC=√3,求:(a+b+c)/(sinA+sinB+sinC)=?
(a+b+c)/(sinA+sinB+sinC)=2R
SΔ=(1/2)bcsinA--->c=2SΔ/(bsinA)=4
--->a2=b2+c2-2bccosA=13
--->(a+b+c)/(sinA+sinB+sinC)
=
2R
=
a/sinA
=
√13/(√3/2)
=2√39/3
因为S△ABC=bcsinA/2=[1*c*(√3/2)]/2=√3
所以,c=4
根据余弦定理有:a^=b^+c^-2bccosA=1+16-2*1*4*(1/2)=13
所以,a=√13
根据正弦定理a/sinA=b/sinB=c/sinC,则:
(a+b+c)/(sinA+sinB+sinC)=a/sinA=(√13)/(√3/2)=2√39/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询