an+1=2an+1/an,a1=1,求an

 我来答
府素枝闪淑
2020-05-27 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:30%
帮助的人:1005万
展开全部
解法1:因为a1=1
,
a(n+1)=an^2/(2an+1),所以an>0
所以1/a(n+1)=(2an+1)/an^2=2/an+1/an^2=(1+1/an)^2-1
所以1+1/a(n+1)=(1+1/an)^2
所以lg(1+1/a(n+1))=lg(1+1/an)^2=2lg(1+1/an)
所以数列{lg(1+1/an)}是首项为lg(1+1/a1)=lg2,公比为2的等比数列
所以lg(1+1/an)=lg2*2^(n-1)=lg2^2^(n-1)
所以1+1/an=2^2^(n-1)
所以an=1/(2^2^(n-1)-1)
解法2:因为a1=1,a(n+1)=an^2/(2an+1)
所以an>0
所以a(n+1)/(1+a(n+1))=[an^2/(2an+1)]/[1+an^2/(2an+1)]=an^2/(an^2+2an+1)=(an/(1+an))^2
所以lg(a(n+1)/(1+a(n+1)))=lg(an/(1+an))^2=2lg(an/(1+an))
(以下步骤同解法一)
所以数列{lg(1+1/an)}是首项为lg(1+1/a1)=lg2,公比为2的等比数列
所以lg(1+1/an)=lg2*2^(n-1)=lg2^2^(n-1)
所以1+1/an=2^2^(n-1)
所以an=1/(2^2^(n-1)-1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式