三角形正弦定理和余弦定理
3个回答
展开全部
正弦定理
:a/sinA=b/sinB=c/sinC=2R
余弦定理
:a^2=b^2+c^2-2bc*cosA
1、SinA:SinB:SinC=2:3:4
由正弦定理得a:b:c=2:3:4
设a=2x,则b=3x,c=4x
cosA=(b^2+c^2-a^2)/2ab
=[(3x)^2+(4x)^2-(2x)^2]/(2*3x*4x)
=21x^2/24x^2
=7/8
2、a:b:c=1:3:5
由正弦定理得sinA:sinB:sinC=1:3:5
设sinA=x,则sinB=3x,sinC=5x
(2sinA+SinB)/SinC
=(2x+3x)/5x
=5x/5x
=1
3、A:B:C=1:2:3
则有A=30,B=60,C=90
由正弦定理有R=b/2sinB=2/2sin60=2/(2*√3/2)=2√3/3
4、1/2abSinC=1/4(a^2+b^2-c^2),
sinC=(a^2+b^2-c^2)/2ab,
由余弦定理有cosC=(a^2+b^2-c^2)/2ab=sinC
sinC=cosC
由于C为三角形的
内角
,所以0<C<180
所以C=45
:a/sinA=b/sinB=c/sinC=2R
余弦定理
:a^2=b^2+c^2-2bc*cosA
1、SinA:SinB:SinC=2:3:4
由正弦定理得a:b:c=2:3:4
设a=2x,则b=3x,c=4x
cosA=(b^2+c^2-a^2)/2ab
=[(3x)^2+(4x)^2-(2x)^2]/(2*3x*4x)
=21x^2/24x^2
=7/8
2、a:b:c=1:3:5
由正弦定理得sinA:sinB:sinC=1:3:5
设sinA=x,则sinB=3x,sinC=5x
(2sinA+SinB)/SinC
=(2x+3x)/5x
=5x/5x
=1
3、A:B:C=1:2:3
则有A=30,B=60,C=90
由正弦定理有R=b/2sinB=2/2sin60=2/(2*√3/2)=2√3/3
4、1/2abSinC=1/4(a^2+b^2-c^2),
sinC=(a^2+b^2-c^2)/2ab,
由余弦定理有cosC=(a^2+b^2-c^2)/2ab=sinC
sinC=cosC
由于C为三角形的
内角
,所以0<C<180
所以C=45
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询