f(x)=4cosxsin(x+6分之派)—1(1)求fx的最小正周期(2)求f(x)在区间【—6
2个回答
展开全部
f(x)=
4cosxsin(x+π/6)-1
=
4cosx(sinxcosπ/6+cosxsinπ/6)-1
=
4cosx(√3/2*sinx+1/2cosx)-1
=
2√3*cosxsinx+2(cosx)^2-1
=
√3sin2x+cos2x
=
2sin(2x+π/6)
(1)
函数的最小正周期T=2π/2=π
(2)
x∈【-π/6,π/4】
∴
2x+π/6∈【-π/6,2π/3】
∴
当2x+π/6=
π/2时,f(x)取得最大值f(x)max=
2
当2x+π/6=
-π/6时,f(x)取得最小值f(x)min=
-1
所以,当x∈【-π/6.π/4】时,f(x)的最大值为2,f(x)的最小值为-1
希望你能采纳。不懂可追问。
4cosxsin(x+π/6)-1
=
4cosx(sinxcosπ/6+cosxsinπ/6)-1
=
4cosx(√3/2*sinx+1/2cosx)-1
=
2√3*cosxsinx+2(cosx)^2-1
=
√3sin2x+cos2x
=
2sin(2x+π/6)
(1)
函数的最小正周期T=2π/2=π
(2)
x∈【-π/6,π/4】
∴
2x+π/6∈【-π/6,2π/3】
∴
当2x+π/6=
π/2时,f(x)取得最大值f(x)max=
2
当2x+π/6=
-π/6时,f(x)取得最小值f(x)min=
-1
所以,当x∈【-π/6.π/4】时,f(x)的最大值为2,f(x)的最小值为-1
希望你能采纳。不懂可追问。
展开全部
解f(x)=4cosxsin(x+π/6)-1
=4cosx(sinxcosπ/6+cosxsinπ/6)-1
=4cosx(sinx×√3/2+cosx×1/2)-1
=cosxsinx×2√3+2cos^2x-1
=√3sin2x+cos2x
=2(√3/2sin2x+1/2cos2x)
=2sin(2x+π/6)
故t=2π/2=π
2由x属于[-π/6,π/4]
即-π/6≤x≤π/4
即-π/3≤2x≤π/2
即-π/6≤2x+π/6≤2π/3
故当2x+π/6=π/2时,即x=π/6时,y有最大值2×1=2
当2x+π/6=-π/6时,即x=-π/6时,y有最大值2×(-1/2)=-1
=4cosx(sinxcosπ/6+cosxsinπ/6)-1
=4cosx(sinx×√3/2+cosx×1/2)-1
=cosxsinx×2√3+2cos^2x-1
=√3sin2x+cos2x
=2(√3/2sin2x+1/2cos2x)
=2sin(2x+π/6)
故t=2π/2=π
2由x属于[-π/6,π/4]
即-π/6≤x≤π/4
即-π/3≤2x≤π/2
即-π/6≤2x+π/6≤2π/3
故当2x+π/6=π/2时,即x=π/6时,y有最大值2×1=2
当2x+π/6=-π/6时,即x=-π/6时,y有最大值2×(-1/2)=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询