隐函数的求导如何进行
展开全部
对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有y'的一个方程,然后化简得到y'的表达式。
隐函数求导法则
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。
隐函数与显函数的区别
1)隐函数不一定能写为y=f(x)的形式,如x²+y²=0。
2)显函数是用y=f(x)表示的函数,左边是一个y,右边是x的表达式。比如:y=2x+1。隐函数是x和y都混在一起的,比如2x-y+1=0。
3)有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。
隐函数求导法则
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。
隐函数与显函数的区别
1)隐函数不一定能写为y=f(x)的形式,如x²+y²=0。
2)显函数是用y=f(x)表示的函数,左边是一个y,右边是x的表达式。比如:y=2x+1。隐函数是x和y都混在一起的,比如2x-y+1=0。
3)有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。
展开全部
1、通常的隐函数,都是一个既含有x又含有y的方程,将整个方程对x求导;
2、求导时,要将y当成函数看待,也就是凡遇到含有y的项时,要先对y求导,然后乘以y对x
的导数,也就是说,一定是链式求导;
3、凡有既含有x又含有y的项时,视函数形式,用积的的求导法、商的求导法、链式求导法,
这三个法则可解决所有的求导;
4、然后解出dy/dx;
5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中。
2、求导时,要将y当成函数看待,也就是凡遇到含有y的项时,要先对y求导,然后乘以y对x
的导数,也就是说,一定是链式求导;
3、凡有既含有x又含有y的项时,视函数形式,用积的的求导法、商的求导法、链式求导法,
这三个法则可解决所有的求导;
4、然后解出dy/dx;
5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一般地,如果方程F(x,y)=0中,令x在某一区间内任取一值时,相应地总有满足此方程的y值存在,则我们就
说方程F(x,y)=0在该区间上确定了x的隐函数y.
把一个隐函数化成显函数的形式,叫做隐函数的显化。
注:有些隐函数并不是很容易化为显函数的,那么在求其导数时该如何呢?
下面让我们来解决这个问题!
隐函数的求导
若已知F(x,y)=0,求时,一般按下列步骤进行求解:
a):若方程F(x,y)=0,能化为的形式,则用前面我们所学的方法进行求导;
b):若方程F(x,y)=0,不能化为的形式,则是方程两边对x进行求导,并把y看成x的函数,
用复合函数求导法则进行。
说方程F(x,y)=0在该区间上确定了x的隐函数y.
把一个隐函数化成显函数的形式,叫做隐函数的显化。
注:有些隐函数并不是很容易化为显函数的,那么在求其导数时该如何呢?
下面让我们来解决这个问题!
隐函数的求导
若已知F(x,y)=0,求时,一般按下列步骤进行求解:
a):若方程F(x,y)=0,能化为的形式,则用前面我们所学的方法进行求导;
b):若方程F(x,y)=0,不能化为的形式,则是方程两边对x进行求导,并把y看成x的函数,
用复合函数求导法则进行。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询