一道化简题 要详细过程 谢谢
展开全部
从最后项着手
(n+2)/(n!+(n+1)!+(n+2)!)分子不变,动分母n!+(n+1)!+(n+2)!=n!+n!(n+1)+n!(n+1)(n+2)=n!(1+n+1+(n+1)(n+2))=n!(n2+4n+4)=n!(n+2)2
所以,(n+2)/(n!+(n+1)!+(n+2)!)=1/n!(n+2)=(n+1)/(n+2)!=(n+2-1)/(n+1)!=(n+2)/(n+2)!-1/(n+2)!
=1/(n+1)!-1/(n+2)!
所以,原式=1/2!-1/3!+1/3!-1/4!+省略+1/(n+1)!-1/(n+2)!
中间的全部抵消,只剩下首尾2项=1/2!-1/(n+2)!
这样就已经够简便,如果非要化成分数的话发比较烦=P(n+2)
n/(n+2)!
(n+2)/(n!+(n+1)!+(n+2)!)分子不变,动分母n!+(n+1)!+(n+2)!=n!+n!(n+1)+n!(n+1)(n+2)=n!(1+n+1+(n+1)(n+2))=n!(n2+4n+4)=n!(n+2)2
所以,(n+2)/(n!+(n+1)!+(n+2)!)=1/n!(n+2)=(n+1)/(n+2)!=(n+2-1)/(n+1)!=(n+2)/(n+2)!-1/(n+2)!
=1/(n+1)!-1/(n+2)!
所以,原式=1/2!-1/3!+1/3!-1/4!+省略+1/(n+1)!-1/(n+2)!
中间的全部抵消,只剩下首尾2项=1/2!-1/(n+2)!
这样就已经够简便,如果非要化成分数的话发比较烦=P(n+2)
n/(n+2)!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询