已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为63,短轴一个端点到右...
已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为63,短轴一个端点到右焦点的距离为3.(1)求椭圆C的方程;(2)直线y=x与椭圆C在第一象限相交于点A,试探究...
已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为63,短轴一个端点到右焦点的距离为3. (1)求椭圆C的方程; (2)直线y=x与椭圆C在第一象限相交于点A,试探究在椭圆C上存在多少个点B,使△OAB为等腰三角形.(简要说明理由,不必求出这些点的坐标)
展开
1个回答
展开全部
解:(1)由于短轴一个端点到右焦点的距离为3,则a=3…(1分),
因为e=ca=63…(2分),所以c=6…(3分),
所以b2=a2-c2=9-6=3…(4分),
所以椭圆C的方程为:x29+y23=1…(5分)
(2)直线方程与椭圆方程联立x29+y23=1y=x(x>0),解得x=y=32,即A(32,32)…(6分)
以O为顶点的等腰三角形△OAB有两个,此时B为A关于x轴或y轴的对称点…(8分),
以A为顶点的等腰三角形△OAB有两个(9分),此时B为以A为圆心、AO为半径的圆弧与椭圆C的交点…(10分),
以AO为底边的等腰三角形△OAB有两个(11分),此时B为AO的垂直平分线与椭圆C的交点…(12分).
因为直线y=x倾斜角为π4,所以以上等腰△OAB不可能是等边三角形…(13分),
即以上6个三角形互不相同,存在6个点B,使△OAB为等腰三角形…(14分).
因为e=ca=63…(2分),所以c=6…(3分),
所以b2=a2-c2=9-6=3…(4分),
所以椭圆C的方程为:x29+y23=1…(5分)
(2)直线方程与椭圆方程联立x29+y23=1y=x(x>0),解得x=y=32,即A(32,32)…(6分)
以O为顶点的等腰三角形△OAB有两个,此时B为A关于x轴或y轴的对称点…(8分),
以A为顶点的等腰三角形△OAB有两个(9分),此时B为以A为圆心、AO为半径的圆弧与椭圆C的交点…(10分),
以AO为底边的等腰三角形△OAB有两个(11分),此时B为AO的垂直平分线与椭圆C的交点…(12分).
因为直线y=x倾斜角为π4,所以以上等腰△OAB不可能是等边三角形…(13分),
即以上6个三角形互不相同,存在6个点B,使△OAB为等腰三角形…(14分).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询