特征值和特征向量怎么求
展开全部
从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。
矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。
通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。这样做的意义在于看清一个矩阵在那些方面能产生最大的效果(power),并根据所产生的每个特征向量(一般研究特征值最大的那几个)进行分类讨论与研究。
扩展资料:
注意事项:
1、当在计算中微子振荡概率时发现,特征向量和特征值的几何本质,其实就是空间矢量的旋转和缩放。而中微子的三个(电子,μ子,τ子),就相当于空间中的三个向量之间的变换。
2、用户只需要列一个简单的方程式,特征向量便可迎刃而解。公式表示只需要通过删除原始矩阵的行和列,创建子矩阵。再将子矩阵和原始矩阵的特征值组合在一起,就可以计算原始矩阵的特征向量。
3、传统的求解特征向量思路,是通过计算特征多项式,然后去求解特征值,再求解齐次线性方程组,最终得出特征向量。
参考资料来源:百度百科-特征值和特征向量
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询