设 f(t)>0且是连续偶函数,又函数F(x)=∫|x-t|f(t)dt定积分上...
设f(t)>0且是连续偶函数,又函数F(x)=∫|x-t|f(t)dt定积分上下限为-a、a,x∈[-a,a],讨论F`(x)的单调性....
设 f(t)>0且是连续偶函数,又函数F(x)=∫|x-t|f(t)dt定积分上下限为-a、a,x∈[-a,a],讨论F`(x)的单调性.
展开
2个回答
展开全部
F(x)=积分(从--a到0)|x--t|f(t)dt+积分(从0到a)|x--t|f(t)dt
第一个做变量替换t==-y再用t代替y=积分(从0到a)(|x--t|+|x+t|)f(t)dt
故F(x)是偶函数,只需考虑x位于【0,a】区间即可.=积分(从0到x)(x--t+x+t)f(t)dt+积分(从x到a)(t--x+x+t)f(t)dt=2x积分(从0到x)f(t)dt--积分(从a到x)2tf(t)dt,于是F'(x)=2积分(从0到x)f(t)dt是【0,a】上的递增函数,由F'(x)是奇函数知道F'(x)是【--a,a】上的递增函数.
第一个做变量替换t==-y再用t代替y=积分(从0到a)(|x--t|+|x+t|)f(t)dt
故F(x)是偶函数,只需考虑x位于【0,a】区间即可.=积分(从0到x)(x--t+x+t)f(t)dt+积分(从x到a)(t--x+x+t)f(t)dt=2x积分(从0到x)f(t)dt--积分(从a到x)2tf(t)dt,于是F'(x)=2积分(从0到x)f(t)dt是【0,a】上的递增函数,由F'(x)是奇函数知道F'(x)是【--a,a】上的递增函数.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询