不定积分 :∫ xcos^2xdx
1个回答
展开全部
∫ xcos^2xdx
=∫ x(1+cos2x/2)dx
=1/2∫ xdx+1/2∫xcos2xdx
=x²/4+1/4∫xdsin2x
=x²/4+1/4*xsin2x-1/4∫sin2xdx
=x²/4+1/4*xsin2x-1/8∫sin2xd2x
=x²/4+1/4*xsin2x+1/8*cos2x+C
=∫ x(1+cos2x/2)dx
=1/2∫ xdx+1/2∫xcos2xdx
=x²/4+1/4∫xdsin2x
=x²/4+1/4*xsin2x-1/4∫sin2xdx
=x²/4+1/4*xsin2x-1/8∫sin2xd2x
=x²/4+1/4*xsin2x+1/8*cos2x+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询