连续可导函数的导数一定连续吗?
3个回答
展开全部
“连续可导”在不同的时候可能有不同指代,但是大多数时候还是说函数本身连续,并且进一步的,函数可导。此时函数的导函数不一定是连续的。具体的例子可以去查《分析中的反例》,或者很多数学分析教材上也会有。
2. 连续函数的变上限积分一定是连续的(而且进一步的,一定是可导的)。函数f(x)在x=0处不可导,因为不连续。函数在x=0处左连续,所以x=0处的左导数可以用f(x)=x+1的导数公式求。函数在x=0处不右连续,所以x=0处的右导数不存在。
结论:函数可导可知函数是连续的,但是并不能知道导函数是连续的。
你的理解有些问题。左导数和右导数可以理解为极限,但这里是原函数的极限,并不是导函数的极限。只能据此得到导函数在某点的取值,但是整个导函数是否连续是不知道的。建议你记住这条结论,在做题时会运用即可。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
按照你的表述,那就是连续的,因为一般表述为"连续可导函数"就暗含了导函数就连续这一条件。
追答
满意望采纳,谢谢
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询