导数的概念是什么

 我来答
星星快快星星
2020-10-27 · TA获得超过5170个赞
知道大有可为答主
回答量:1.2万
采纳率:96%
帮助的人:450万
展开全部
导数(Derivative)是微积分学中重要的基础概念,是函数的局部性质。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
起源
大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。

发展
17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。
请在寂寞时爱我
2020-10-27 · 知道合伙人教育行家
请在寂寞时爱我
知道合伙人教育行家
采纳数:3353 获赞数:26259
1989年毕业于滨州师范专科学校英语专业,1996年毕业于山东省教育学院,中学一级教师,博兴县教学能手

向TA提问 私信TA
展开全部
导数(Derivative)是微积分学中重要的基础概念,是函数的局部性质。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ssitong
高粉答主

2020-10-27 · 每个回答都超有意思的
知道大有可为答主
回答量:1.3万
采纳率:90%
帮助的人:5187万
展开全部
导数的概念源于函数变化快慢。
y是x的函数表示为y=f(x),大意是y随着x变化而变化,当x变化到x+Δx时,y变化到y+Δy,此时将比值Δy/Δx叫做函数y对自变量x的平均变化率,当Δx->0时,平均变化率的极限值就叫做函数在x的导数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式