用秦九韶算法计算多项式f(x)=12+35x-8x2+79x3+6x4+5x5+...
用秦九韶算法计算多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时的值时,V3的值为....
用秦九韶算法计算多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时的值时,V3的值为 .
展开
1个回答
展开全部
分析:首先把一个n次多项式f(x)写成(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0]的形式,然后化简,求n次多项式f(x)的值就转化为求n个一次多项式的值,求出V3的值.
解答:解:∵f(x)=12+35x-8x2+79x3+6x4+5x5+3x6
=((3x+5)x+6)x+79)x-8)x+35)x+12,
∴v=a6=3,
v1=vx+a5=3×(-4)+5=-7,
v2=v1x+a4=-7×(-4)+6=34,
v3=v2x+a3=34×(-4)+79=-57,
∴V3的值为-57;
故答案为:-57.
点评:本题考查排序问题与算法的多样性,通过数学上的算法,写成程序,然后求解,属于中档题.
解答:解:∵f(x)=12+35x-8x2+79x3+6x4+5x5+3x6
=((3x+5)x+6)x+79)x-8)x+35)x+12,
∴v=a6=3,
v1=vx+a5=3×(-4)+5=-7,
v2=v1x+a4=-7×(-4)+6=34,
v3=v2x+a3=34×(-4)+79=-57,
∴V3的值为-57;
故答案为:-57.
点评:本题考查排序问题与算法的多样性,通过数学上的算法,写成程序,然后求解,属于中档题.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询