展开全部
两个三角形全等条件共有五种。
1、边边边(SSS),三边相等。即如果有两个三角形,它们三条边都相等,则可以判断为两个三角形全等。
2、边角边(SAS)两条边和它们间的夹角相等。即如果有两个三角形,两条边相等,并且他们间的夹角也相等,可以判断为两个三角形全等。
3、角边角(ASA)两个角它们间夹边相等。即如果有两个三角形,有两个角相等,并且他们间的夹边也相等,可以判断为两个三角形全等。
4、角角边(AAS)两个角和其中一角的边相等。即如果有两个三角形,有两个角相等,并且他们任意一个角的一条边也相等,可以判断为两个三角形全等。
5、直角三角形斜边和一条直角边相等(HL)。直角三角形比较特殊,它有一个角是90度的,所以只要它的斜边和一条直角边相等,可以判断为两个三角形全等。
1、边边边(SSS),三边相等。即如果有两个三角形,它们三条边都相等,则可以判断为两个三角形全等。
2、边角边(SAS)两条边和它们间的夹角相等。即如果有两个三角形,两条边相等,并且他们间的夹角也相等,可以判断为两个三角形全等。
3、角边角(ASA)两个角它们间夹边相等。即如果有两个三角形,有两个角相等,并且他们间的夹边也相等,可以判断为两个三角形全等。
4、角角边(AAS)两个角和其中一角的边相等。即如果有两个三角形,有两个角相等,并且他们任意一个角的一条边也相等,可以判断为两个三角形全等。
5、直角三角形斜边和一条直角边相等(HL)。直角三角形比较特殊,它有一个角是90度的,所以只要它的斜边和一条直角边相等,可以判断为两个三角形全等。
展开全部
全等三角形的定义
两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、翻折等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。简单的说就是,能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”。而两个三角形全等的判定是几何证明的有力工具。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
三角形全等的判定公理及推论
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
A是英文角的缩写,S是英文边的缩写。
全等三角形的性质
1、全等三角形的对应角相等、对应边相等。
2、线段垂直平分线上的点到线段两端点的距离相等。
3、角平分线上的点到角两边的距离相等。
全等三角形的运用
1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、翻折等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。简单的说就是,能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”。而两个三角形全等的判定是几何证明的有力工具。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
三角形全等的判定公理及推论
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
A是英文角的缩写,S是英文边的缩写。
全等三角形的性质
1、全等三角形的对应角相等、对应边相等。
2、线段垂直平分线上的点到线段两端点的距离相等。
3、角平分线上的点到角两边的距离相等。
全等三角形的运用
1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询