培养学生解题能力的途径有哪些
展开全部
从小学生解题的行为实际看,主要存在的问题有:一是难以养成思维习惯,常常盲目解题;二是任务观点严重,解题不求灵活简洁;三是马虎草率,错误百出。要提高学生的解题能力,首先要提高学生的智力,发展他们的思维。
一、一例多说,养成解题的思维习惯
1.顺逆说。每解答一道应用题时,不必急于去求答案,而要让学生分别进行顺思考和逆思考,把解题思路及计划说出来。比如解答“三年级种树25棵,四年级种树是三年级的2倍,四年级比三年级多种几棵?”先让学生用综合法从条件到问题依次说出思路,再让学生用分析法从问题到条件说出思路。学生顺逆分别说清思路后,再列出算式“25×2-25”。如果,学生在说的过程中,语言还不够流畅,思路还不够清晰,还要再让学生看算式“25×2-25”,再进行第二次“顺逆说”:先让学生说第一步“25×2”表示什么?再让学生说第二步“25×2-25”表示什么?最后先说第二步、再说第一步。
2.转换说。对于题中某一个条件或问题,要引导学生善于运用转换的思想,说成与其内容等价的另一种表达形式,使学生加深理解,从而丰富解题方法,提高解题能力。如已知“A与B的比是3∶5”,可引导学生联想说出:(1)B与A的比是5∶3;(2)A是B的3/5;(3)B是A的5/3;(4)A比B少2/5;(5)B比A多2/5;(6)A是3份,B是5份,一共是8份,等等。这样,学生解题思路就会开阔,方法就会灵活多样,从而化难为易。
二、多向探索,培养解题的灵活性
1.一题多问。同一道题,同样的条件,从不同的角度出发,可以提出不同的问题。如解答“五一班有学生45人。女生占4/9,女生有多少人?”这本来是一道很简单的题目。教学中,老师往往会因学生很容易解答,而一晃而过,忽视发散思维的训练。对于这样的题型,老师要执意求新,变换提出新的问题。如再提出如下问题:(1)男生有多少人?(2)全班有多少人?(3)男生比女生多多少人?(4)男生是女生的几倍?(5)女生是男生的几分之几?等等。这样,可以起到“以一当十”的教学效果。
2.一题多解。在解题时,要经常注意引导学生从不同的方面探求解题途径,以求最佳解法。
例如“某村计划修一条长150米的路,前3天完成了计划的20%,照这样计算,完成这条路还需多少天?”首先老师要学生用多种方法解。在学生没有学习工程问题时,解法一般集中在以下三种上:①(150-150×20%)÷(150×20%÷3)=12(天);②150÷(150×20%÷3)-3=12(天);③150×(1-20%)÷(150×20%÷3)=12(天)。
针对这些解法,老师要善于引导学生比较三种方法的异同点,总结出“三种方法中都运用了全程150米”这一条件的共性。针对这一共性,老师可打破思维定势,启迪学生的新思维:“假如把150米当作一条路(用1来表示),还可以怎样解答?”这一点拨,学生很容易发现如下解法:④3×[(1-20%)÷20%]=12(天);⑤1÷(20%÷3)-3=12(天);⑥3÷20%-3=12(天)。综上六种解法,显然后三种解法(尤其是解法⑥),列式简洁,想像丰富,可以充分显示学生思维的灵活性。
3.一题多变。小学生解题时,往往受解题动机的影响,因局部感知而干扰整体的认识。例如:“某商厦共有6层,每两层间的板梯长5米,从1楼到6楼共要走多少米?”往往由于“每两层5米”和“6层”与学生的解题动机发生共鸣,忽视了“6层只有5段间距”这一特点,而容易得出“5×6”的错解。要消除类似的干扰,就必须进行一些一题多变的训练。
三、联系对比,提高解题的准确率
1.联系生活实际对比。对于难理解的题,要增添一些与之数量关系相同,能贴近学生生活的实例,先解熟悉的题,再解生疏的题。如要解答:“某专业户要种一块300平方米的果树,行距2米、棵距1米,种完这块地要多少棵树苗?”可首先补充另一题:“在一块300平方米的操场上站队做操,每两排纵队之间相距2米,前后两人之间相距1米,按这样站队,站满这个操场一共要多少人?”因两题思路相通,解法相同,先解贴近学生生活的补充题,再解原题,迁移自然,默化易成。
2.联系正误对比。有比较才有鉴别,学生解题的错误,往往错在认识不清、感知模糊、理解肤浅上,用给出正确答案(或算式)和错误答案(或算式)的对比如正误分析对比、正误解法对比等,都有利于加强学生辩证思维训练,有利于提高解题能力。通常的选择题就是很好的训练形式。
3.联系题型对比。在小学数学题型中,归纳起来不外乎是概念题、计算题、文字题、应用题和图式题等几大类。像计算式题、文字题、应用题、图式题大都是实际生活中的例子,只是用四种不同的描述形式表达而已。比如“6个苹果吃了2个,还有几个?”除用这种“应用题”的形式描述外,还可以用最简单的算式“6-2=?”来描述,也可以用一句话“6减2的差是多少?”或一幅线段图(或实物图)来描述。根据这种知识内在的联系特点,在教学中,要善于把各种描述的形式联系起来,进行训练,达到由此及彼,由里及外,融汇贯通和举一反三的效果。
一、一例多说,养成解题的思维习惯
1.顺逆说。每解答一道应用题时,不必急于去求答案,而要让学生分别进行顺思考和逆思考,把解题思路及计划说出来。比如解答“三年级种树25棵,四年级种树是三年级的2倍,四年级比三年级多种几棵?”先让学生用综合法从条件到问题依次说出思路,再让学生用分析法从问题到条件说出思路。学生顺逆分别说清思路后,再列出算式“25×2-25”。如果,学生在说的过程中,语言还不够流畅,思路还不够清晰,还要再让学生看算式“25×2-25”,再进行第二次“顺逆说”:先让学生说第一步“25×2”表示什么?再让学生说第二步“25×2-25”表示什么?最后先说第二步、再说第一步。
2.转换说。对于题中某一个条件或问题,要引导学生善于运用转换的思想,说成与其内容等价的另一种表达形式,使学生加深理解,从而丰富解题方法,提高解题能力。如已知“A与B的比是3∶5”,可引导学生联想说出:(1)B与A的比是5∶3;(2)A是B的3/5;(3)B是A的5/3;(4)A比B少2/5;(5)B比A多2/5;(6)A是3份,B是5份,一共是8份,等等。这样,学生解题思路就会开阔,方法就会灵活多样,从而化难为易。
二、多向探索,培养解题的灵活性
1.一题多问。同一道题,同样的条件,从不同的角度出发,可以提出不同的问题。如解答“五一班有学生45人。女生占4/9,女生有多少人?”这本来是一道很简单的题目。教学中,老师往往会因学生很容易解答,而一晃而过,忽视发散思维的训练。对于这样的题型,老师要执意求新,变换提出新的问题。如再提出如下问题:(1)男生有多少人?(2)全班有多少人?(3)男生比女生多多少人?(4)男生是女生的几倍?(5)女生是男生的几分之几?等等。这样,可以起到“以一当十”的教学效果。
2.一题多解。在解题时,要经常注意引导学生从不同的方面探求解题途径,以求最佳解法。
例如“某村计划修一条长150米的路,前3天完成了计划的20%,照这样计算,完成这条路还需多少天?”首先老师要学生用多种方法解。在学生没有学习工程问题时,解法一般集中在以下三种上:①(150-150×20%)÷(150×20%÷3)=12(天);②150÷(150×20%÷3)-3=12(天);③150×(1-20%)÷(150×20%÷3)=12(天)。
针对这些解法,老师要善于引导学生比较三种方法的异同点,总结出“三种方法中都运用了全程150米”这一条件的共性。针对这一共性,老师可打破思维定势,启迪学生的新思维:“假如把150米当作一条路(用1来表示),还可以怎样解答?”这一点拨,学生很容易发现如下解法:④3×[(1-20%)÷20%]=12(天);⑤1÷(20%÷3)-3=12(天);⑥3÷20%-3=12(天)。综上六种解法,显然后三种解法(尤其是解法⑥),列式简洁,想像丰富,可以充分显示学生思维的灵活性。
3.一题多变。小学生解题时,往往受解题动机的影响,因局部感知而干扰整体的认识。例如:“某商厦共有6层,每两层间的板梯长5米,从1楼到6楼共要走多少米?”往往由于“每两层5米”和“6层”与学生的解题动机发生共鸣,忽视了“6层只有5段间距”这一特点,而容易得出“5×6”的错解。要消除类似的干扰,就必须进行一些一题多变的训练。
三、联系对比,提高解题的准确率
1.联系生活实际对比。对于难理解的题,要增添一些与之数量关系相同,能贴近学生生活的实例,先解熟悉的题,再解生疏的题。如要解答:“某专业户要种一块300平方米的果树,行距2米、棵距1米,种完这块地要多少棵树苗?”可首先补充另一题:“在一块300平方米的操场上站队做操,每两排纵队之间相距2米,前后两人之间相距1米,按这样站队,站满这个操场一共要多少人?”因两题思路相通,解法相同,先解贴近学生生活的补充题,再解原题,迁移自然,默化易成。
2.联系正误对比。有比较才有鉴别,学生解题的错误,往往错在认识不清、感知模糊、理解肤浅上,用给出正确答案(或算式)和错误答案(或算式)的对比如正误分析对比、正误解法对比等,都有利于加强学生辩证思维训练,有利于提高解题能力。通常的选择题就是很好的训练形式。
3.联系题型对比。在小学数学题型中,归纳起来不外乎是概念题、计算题、文字题、应用题和图式题等几大类。像计算式题、文字题、应用题、图式题大都是实际生活中的例子,只是用四种不同的描述形式表达而已。比如“6个苹果吃了2个,还有几个?”除用这种“应用题”的形式描述外,还可以用最简单的算式“6-2=?”来描述,也可以用一句话“6减2的差是多少?”或一幅线段图(或实物图)来描述。根据这种知识内在的联系特点,在教学中,要善于把各种描述的形式联系起来,进行训练,达到由此及彼,由里及外,融汇贯通和举一反三的效果。
展开全部
培养学生解题能力的途径有多种,包括素质教育、学习策略培养、做题方法与思维训练等。首先素质教育,要培养学生对问题分析、解决问题的能力;其次,学习策略培养,要让学生养成规范的学习习惯;最后,做题方法与思维训练,要培养学生解题的能力,合理利用思维,并通过反复实践来提升解题能力。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
大部分人都说靠天赋,我不觉得。解题能力是后天培养出来的,老师讲课方式是一方面,学生自学也是一方面。老师上课要养成不只讲一种解题思路的习惯,多方面回答问题,条条大路通罗马,要善于开发学生的脑回路。学生私下解题,要活灵活现 不要拘泥于一种形式,死板教条,稍微一改变就傻眼,还是那句话,多方面考虑问题是绝佳的,等到你研究透题了,你就知道题有好几种算法了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
培养学生的解题能力的途径,主要是让他在解题过程中要做到举一反三一题多解的思维方式,这样时间长了就会使自己的思维越来越火呀,解题能力也叫相对提高了。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
注重培养孩子的逻辑思维能力,平时辅导注重培养解题思路,解题技巧,不要过分注重答案。虽然考试中答案是最重要的。还要培养解题过程中一些良好的解题习惯。比如物理题中的快车追赶慢车;杠杆受力分析等,多画图,帮助孩子抽象地去理解。 对了,兴趣是最好的老师,这句话绝对没有错,让孩子体验一次当学霸的感觉,同桌女生投来崇拜的目光的时候,我相信孩子会爱上这种感觉的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询