1个回答
展开全部
题目可能有误。 稍改为 (x+1)/(x^2-6x+5) 解之。 此类问题解法如下:
f(x) = (x+1)/(x^2-6x+5) = (x+1)/[(x-1)(x-5)] = A/(x-1) + B/(x-5)
= [A(x-5)+B(x-1)]/[(x-1)(x-5)], 得 A+B = 1, -5A-B = 1,
解得 A = -1/2, B = 3/2,
f(x) = (-1/2)/(x-1) + (3/2)/(x-5) = (-1/2)/(x-2+1) + (3/2)/(x-2-3)
= -(1/2)/(1+x-2) - (1/2)/[1-(x-2)/3]
= -(1/2)∑<n=0, ∞>(-1)^n(x-2)^n - (1/2)∑<n=0, ∞>[(x-2)/3]^n
= -(1/2)∑<n=0, ∞>[(-1)^n+1/3^n](x-2)^n
收敛域 -1 < x-2 < 1, -1 < (x-2)/3 < 1,
即 1 < x < 3, -1 < x < 5, 得 1 < x < 3。
f(x) = (x+1)/(x^2-6x+5) = (x+1)/[(x-1)(x-5)] = A/(x-1) + B/(x-5)
= [A(x-5)+B(x-1)]/[(x-1)(x-5)], 得 A+B = 1, -5A-B = 1,
解得 A = -1/2, B = 3/2,
f(x) = (-1/2)/(x-1) + (3/2)/(x-5) = (-1/2)/(x-2+1) + (3/2)/(x-2-3)
= -(1/2)/(1+x-2) - (1/2)/[1-(x-2)/3]
= -(1/2)∑<n=0, ∞>(-1)^n(x-2)^n - (1/2)∑<n=0, ∞>[(x-2)/3]^n
= -(1/2)∑<n=0, ∞>[(-1)^n+1/3^n](x-2)^n
收敛域 -1 < x-2 < 1, -1 < (x-2)/3 < 1,
即 1 < x < 3, -1 < x < 5, 得 1 < x < 3。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询