求微分方程dy/dx=y/(x+y^4)的通解
2个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
∵令t=lny,则y=e^t,dy=e^tdt
∴代入原方程得
dy/dx=y/(x+y^4)
==>ydx/dy=(x+y^4)
==>e^tdx/(e^tdt)=(x+e^(4t))
==>dx/dt=x+e^(4t).(1)
∵很容易求出齐次方程dx/dt=x的通解是
x=Ce^t (C是积分常数)
∴根据常数变易法,设方程(1)的解为x=C(t)e^t (C(t)是关于t的函数)
∵代入方程(1)得
C'(t)e^t+C(t)e^t=C(t)e^t+e^(4t)
==>C'(t)e^t=e^(4t)
==>C'(t)=e^(3t)
==>C(t)=e^(3t)/3+C (C是积分常数)
∴方程(1)的通解是x=(e^(3t)/3+C)e^t=e^(4t)/3+Ce^t
故原方程的通解是x=y^4/3+Cy (C是积分常数).
∴代入原方程得
dy/dx=y/(x+y^4)
==>ydx/dy=(x+y^4)
==>e^tdx/(e^tdt)=(x+e^(4t))
==>dx/dt=x+e^(4t).(1)
∵很容易求出齐次方程dx/dt=x的通解是
x=Ce^t (C是积分常数)
∴根据常数变易法,设方程(1)的解为x=C(t)e^t (C(t)是关于t的函数)
∵代入方程(1)得
C'(t)e^t+C(t)e^t=C(t)e^t+e^(4t)
==>C'(t)e^t=e^(4t)
==>C'(t)=e^(3t)
==>C(t)=e^(3t)/3+C (C是积分常数)
∴方程(1)的通解是x=(e^(3t)/3+C)e^t=e^(4t)/3+Ce^t
故原方程的通解是x=y^4/3+Cy (C是积分常数).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询