求棱长为1的正四面体的外接球的半径
展开全部
设正四面体P-ABC,作PH⊥底面ABC,垂足H,作CD⊥AB,H在CD上,H是正三角形ABC的外(内、重、垂)心,
CH=2CD/3=(a√3/2)*(2/3)=√3a/3,
PH=√(PC^2-CH^2)=√6a/3,
设O点是外接球心,它在PH上,PO=AO=R,R为外接球半径,
(PH-PO)^2+CH^2=CO^2,
(√6a/3-R)^2+(√3a/3,)^2=R^2,
R=√6a/4
copy了,你把a换成1带进去就好了
=√6/4
CH=2CD/3=(a√3/2)*(2/3)=√3a/3,
PH=√(PC^2-CH^2)=√6a/3,
设O点是外接球心,它在PH上,PO=AO=R,R为外接球半径,
(PH-PO)^2+CH^2=CO^2,
(√6a/3-R)^2+(√3a/3,)^2=R^2,
R=√6a/4
copy了,你把a换成1带进去就好了
=√6/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
系科仪器
2024-08-02 广告
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询