判断f(x)=ln[x+√(x^2+1)]的奇偶性
展开全部
f(x)+f(-x)
=ln[x+√(x^2+1)]+ln[-x+√(x^2+1)]
=ln[x+√(x^2+1)]*[-x+√(x^2+1)]
=ln{[√(x^2+1)]^2-x^2}
=ln1
=0
所以f(-x)=-f(x)
定义域
x+√(x^2+1)〉0
若x>=0,显然成立
x-x>0
平方
x^2+1>x^2
成立
所以定义域是R,关于原点对称
又f(-x)=-f(x)
所以是奇函数
=ln[x+√(x^2+1)]+ln[-x+√(x^2+1)]
=ln[x+√(x^2+1)]*[-x+√(x^2+1)]
=ln{[√(x^2+1)]^2-x^2}
=ln1
=0
所以f(-x)=-f(x)
定义域
x+√(x^2+1)〉0
若x>=0,显然成立
x-x>0
平方
x^2+1>x^2
成立
所以定义域是R,关于原点对称
又f(-x)=-f(x)
所以是奇函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询