f(x)=x/tanx 求函数间断点 具体判断是哪类间断点

 我来答
舒适还明净的海鸥i
2022-06-05 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:68.9万
展开全部
∵y=x/tanx
∴x=kπ,x=kπ+π/2 (K是整数)是它的间断点
∵f(0+0)=f(0-0)=1 (K=0时)
f(kπ+0)和f(kπ-0)都不存在 (k≠0时)
f(kπ+π/2+0)=f(kπ+π/2-0)=0
∴x=kπ (是不为零的整数)是属于第二类间断点,
x=0和x=kπ+π/2 (K是整数)是属于可去间断点
补充定义:当x=0时,y=1.当x=kπ+π/2 (K是整数)时,y=0.
原函数在点x=0和x=kπ+π/2 (K是整数)就连续了.
首先,分母tanx在-π/2,π/2的两个个点的极限都不存在;其次,分母tanx(在x→0时)极限等于零,也不能由此说函数的极限就存在】
f(x)=x/tanx在(-π,π)范围内的间断点有三个:
①x=0,此时分母等于零;
②x=-π/2,此时分母没有定义;
③x=π/2,此时分母没有定义.
它们都是可去间断点,这是因为:
①x→0,f(x)→1;
②x→-π/2,f(x)→0;
③x→π/2,f(x)→0.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式