设f(x)具有二阶导数f''(x),证明f''(x)=lim(f(x+h)-2f(x)+f(x-h))/h^2
2个回答
展开全部
先用一次洛必达法则,(注意对h求导,x是定值),分子是f'(x+h)-f'(x-h),分母是2h,改为0.5*
[f'(x+h)-f'(x)]/h+[f'(x-h)-f'(x)]/(-h),两部分都用导数的定义得极限是f''(x)
[f'(x+h)-f'(x)]/h+[f'(x-h)-f'(x)]/(-h),两部分都用导数的定义得极限是f''(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询