怎么求特征向量

 我来答
青柠姑娘17
2022-06-05 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6562
采纳率:100%
帮助的人:37.3万
展开全部

通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。这样做的意义在于看清一个矩阵在那些方面能产生最大的效果,并根据所产生的每个特征向量(一般研究特征值最大的那几个)进行分类讨论与研究。

怎么求特征向量

求特征向量:

一旦找到特征值λ,相应的特征向量可以通过求解特征方程(A – λI) v = 0 得到,其中v为待求特征向量,I为单位阵。

没有实特征值的一个矩阵的例子是顺时针旋转90度。

数值计算:

在实践中,大型矩阵的特征值无法通过特征多项式计算,计算该多项式本身相当费资源,而精确的“符号式”的根对于高次的多项式来说很难计算和表达:阿贝尔-鲁费尼定理显示高次(5次或更高)多项式的根无法用n次方根来简单表达。对于估算多项式的根的有效算法是有的,但特征值的小误差可以导致特征向量的巨大误差。求特征多项式的零点,即特征值的一般算法,是迭代法。最简单的方法是幂法:取一个随机向量v,然后计算一系列单位向量。

这个序列几乎总是收敛于绝对值最大的特征值所对应的特征向量。这个算法很简单,但是本身不是很有用。但是,象QR算法这样的算法正是以此为基础的。

特征向量简介

特征向量是一个非简并的向量,在这种变换下其方向保持不变。该向量在此变换下缩放的比例称为其特征值(本征值)。特征值是线性代数中的一个重要概念。

线性变换通常可以用其特征值和特征向量来完全描述。特征空间是一组特征值相同的特征向量。“特征”一词来自德语的eigen。

希尔伯特在1904年第一次用这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词。eigen一词可翻译为”自身的”、“特定于……的”、“有特征的”、或者“个体的”,这显示了特征值对于定义特定的线性变换的重要性。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2023-05-18
展开全部

求特征向量需要先求特征值,步骤如下:1. 解出矩阵的特征方程:$det(A-\\lambda I)=0$,其中$A$为方阵,$I$为单位矩阵,$\\lambda$为待求的特征值。2. 求出所有特征值。3. 对于每个特征值$\\lambda_i$,解出齐次线性方程组$(A-\\lambda_iI)x=0$的基础解系,这些基础解向量就是对应的特征向量。注意,特征向量不唯一,只需要求出特征向量的基础解系即可。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式