矩阵相关定理定义归纳

 我来答
舒适还明净的海鸥i
2022-07-27 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:68.3万
展开全部
(下图这种表示方法 在证明很多定理的时候很有用)

矩阵基本运算

矩阵与线性方程式
定义:
1)下图公式中 向量(x,y,z)左侧的矩阵称为系数矩阵,右侧的向量称为常向量
2)如果常向量的每一个元素都为0,则称这个线性方程式是齐次的,否则就是非齐次的。
3)对线性方程组进行初等变换(交换两个方程的位置、用一个非零数乘某一个方程、把一个方程的倍数加到另一个方程上),不会改变线性方程组的解即不会改变向量(x,y,z)的值。

阶梯型矩阵、最简阶梯形矩阵(reduced form)
线性方程组经过初等行变换约减之后会得到三种解的情况:唯一解、多个解和无解。
分别如图:

逆矩阵
1)一个矩阵的某一行或者某一列上的元素如果全为0则这个矩阵是不可逆的。

利用初等变换求一个矩阵的逆矩阵( 高斯约当消元法)
1)首先构造一个nx2n的矩阵(在原矩阵的右边加一个单位矩阵);
2)利用初等行变换,将左侧消元到单位矩阵,则逆矩阵即为右边的那个矩阵。

行列式
1)行列式是一个标量

特征值和特征向量
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式