若P为抛物线y^2=x上一动点,Q为圆C (x-4)^2+y^2=1上的一个动点,则|PQ|的最小值为

 我来答
户如乐9318
2022-08-18 · TA获得超过6673个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:141万
展开全部
你可以先画个草图看看.要求|PQ|的最小值,即以C为圆心,b为半径做同心圆,与抛物线相切,|PQ|的最小值=b-1.(x-4)^2+y^2=b^2(b>1)与y^2=x联立,即可得:x^2-7x+16-b^2=0,△=49-4*(16-b^2)=0可求出b=√15/2∴|PQ|min=√...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式