如何证明数列没有极限 例如,设(1+1/n)sin(n∏/2)无极限

 我来答
大沈他次苹0B
2022-08-01 · TA获得超过7276个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:171万
展开全部
这个例子可以用“数列收敛于a,则该数列任意子列收敛于a”这个命题来做.
假设原数列有极限a,该数列的偶数项子列均为0,而下标为4k+1(k∈N)的子列收敛于1,这与上述命题矛盾,所以假设不成立,即该数列无极限.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式