
如何求解微分方程?
1个回答
展开全部
此题解法如下:
∵ (1+y)dx-(1-x)dy=0
==>dx-dy+(ydx+xdy)=0
==>∫dx-∫dy+∫(ydx+xdy)=0
==>x-y+xy=C (C是常数)
∴ 此方程的通解是x-y+xy=C。
约束条件
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。

2025-09-30 广告
上海艾羽信息科技有限公司是一家以CAE软件销售、技术咨询及服务,仿真咨询及规划布局为一体的高科技公司。作为ANSYS的合作伙伴,艾羽致力于将ANSYS推出的产品,通过业界性能颇佳、丰富的工程仿真软件产品组合帮助客户解决复杂的仿真难题。力求与...
点击进入详情页
本回答由VSH艾羽提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询