求方程123x+57y=531的整数解

 我来答
黑科技1718
2022-11-03 · TA获得超过5872个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:81.6万
展开全部

更新1:

Let y = v + 4.................(1) Let x = u + 2........(2) 呢到点黎


更新2:

Let y = v + 4.................(1) Let x = u + 2........(2) 点黎


To find the integral solution for 123x + 57y = 531
first we reduce the equation to: Before finding the general solution
we need to find one simple solution first. by guess
we have 41(-1) + 19(2) = 3 and hence
41(-59) + 19(118) = 177 so one such solution is (-59
118) 41x + 19y = 177 Since LCM (41
19) = 779
so 41(-59) + 779k - 779k + 19(118) = 177
where k is an integer 41(-59 + 19k) + 19(118 - 41k) = 177 So the general integral solution is x = -59 + 19k
y = 118 - 41k
where k is an integer For example
take k = 0
we get the solution we guessed before.
When x = 0
y = 531/57 = 9.3. So for both x and y to be positive integers
y must be beeen 0 and 9. Let y = v + 4.................(1) When y = 0
x = 531/123 = 4.3
So x is beeen 0 and 4. Let x = u + 2........(2) Sub. (1) and (2) into the equation
we get 123(u + 2) + 57(v + 4) = 531 123u + 246 + 57v + 228 = 531 123u + 57v = 57 so u = 0 and v = 1. Therefore
x = 0+ 2 = 2 and y = 1 +4 = 5.
123x+57y=531 一起除3 41x+19y=177 因为x
y是整数 when x=1 177- 41 x1 = 136 不整除于19 when x=2 177-82 = 95 整除于19 所以x=2正确
将x=2代入 41x+19y=177 y=5 when x=3 177-3x41=177-123=54不整除于19 when x=4 177-4x41=13 不整除于19 答案y=5 x=2 123(2) + 57(5)=531 246+285=531 正解!
参考: me

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式