证明:等腰三角形两底角的角平分线相等. 角平分线分别交于两腰一点

 我来答
京斯年0GZ
2022-08-25 · TA获得超过6208个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74.3万
展开全部
一、二楼的,不要不懂装懂,看看初中的几何书吧,角的平分线是射线,但三角形的角平分线是线段.
(只说证明过程,图要提问的朋友自己画)
已知:△ABC中,AB=AC,BD、CE是三角形的角平分线,分别交AC、AB于点D、E
求证:BD=CE
证明:在△ABC中
∵AB=AC(已知)
∴∠ABC=∠ACB(等边对等角)
即∠EBC=∠DCB
又∵BD、CE分别平分∠ABC和∠ACB
∴∠DBC=∠ECB
在△DBC和△ECB中
∠DCB=∠EBC(已证)
BC=CB(公共边)
∠DBC=∠ECB(已证)
∴△DBC≌△ECB(ASA)
∴BD=CE(全等三角形对应边相等)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式