设a,b,c,d都是自然数,且a^5=b^4,c^3=d^2,a-c=17,求d-b的值?
1个回答
展开全部
因为a^5=b^4,c^3=d^2 所以b^4/a^4=a, d^2/c^2=c 所以(b/a)^4=a, (d/c)^2=c 设b/a=m,d/c=n(m、n大于0) 则a=m^4 b=m^5 c=n^2 d=n^3 因为a-c=17 所以m^4-n^2=(m^2+n)(m^2-n)=17 因为17是质数 所以m^2+n=17,m^2-n=1 所以m=3,n=8 所以d-b=n^3-m^5=8^3-3^5=239 百度专家组为您解答,请按一下手机右上角的采纳!谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询