向量的加减法运算法则
展开全部
向量的加减法运算法则如下:
向量加法满足平行四边形法则和三角形法则。向量加法的运算律有交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
向量减法的运算法则为:如果a、b是互为相反的向量,那么a-b=0。
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。
向量定义是既有大小,又有方向的量叫做向量(Vector)。在几何上,向量用有向线段来表示,有向线段长度表示向量的大小,有向线段的方向表示向量的方向。其实有向线段本身也是向量,称为几何向量。今后我们将以它为代表来研究向量。
在实际问题中,有些向量与其起点有关,有些向量与其起点无关。由于一切向量的共性是它们都有大小和方向,所以在数学上我们只研究与起点无关的向量,并称这种向量为自由向量(以后简称向量),即只考虑向量的大小和方向,而不论它的起点在什么地方。
在只讨论自由向量的约定下,向量可以平行移动,所以两个向量相等的定义如下:定义如果两个向量大小相等,且方向相同,我们就说这两个向量是相等的。即:经过平行移动后能完全重合的向量是相等向量,或者说它们是同一个向量。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询