反三角函数:
arcsin(-x)=-arcsinx。
arccos(-x)=π-arccosx。
arctan(-x)=-arctanx。
arccot(-x)=π-arccotx。
arcsinx+arccosx=π/2=arctanx+arccotx。
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x。
当x∈〔0,π〕,arccos(cosx)=x。
x∈(—π/2,π/2),arctan(tanx)=x。