导数介值定理
展开全部
若函数f(x)在(a,b)内可导,α,β∈(a,b),且α<β,且f(α)<f(β),则对于任意的k∈(f′(α),f′(β)),必定存在ξ∈(α,β),使得f′(ξ)=k.
中间值定理
设函数f(x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值,f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ,使得f(ξ)=C (a<ξ<b)。
特殊情况
如果f(a)与f(b)异号,那么在开区间(a,b)内至少有一点ξ,使得f(ξ)=0 (a<ξ<b),则符合零点定理。
几何意义
连续曲线弧y=f(x)与水平直线y=C至少相交于一点。特别地,如果A与B异号,则连续曲线与x轴至少相交一次。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询