怎么理解不定积分

 我来答
sir_chen
2022-10-24 · TA获得超过5589个赞
知道大有可为答主
回答量:1012
采纳率:0%
帮助的人:709万
展开全部
定积分确切的说是一个数,或者说是关于积分上下限的二元函数,也可以成为二元运算,可以这样理解∫[a,b]f(x)dx=a*b,其中*即为积分运算(可以类比简单的加减运算,只不过这时定义的法则不一样,加减运算是把二维空间的点映射到一维空间上一个确定的点,定积分也一样,只不过二者的法则不一样);
不定积分也可以看成是一种运算,但最后的结果不是一个数,而是一类函数的集合.
对于可积函数(原函数是初等函数)存在一个非常美妙的公式
∫[a,b]f(x)dx=F(b)-F(a)
其中F'(x)=f(x)或∫f(x)dx=F(x)+c

最后附上一句,积分这一章难度较大,要学好这一章首先要把微分运算弄得很清楚,同时常用的公式也要记.而且有些定积分是不能通过牛顿-莱布尼巧消茨公式计算的,如∫[0,∞]sinx/xdx=π/2(用留数算的),∫[0,∞]e^(-x^2)dx=√2/2(用二重积分极坐标代换算的),以上两种积分的原函数都不能用初等函数表示,因此也就不能用牛嫌宽祥顿-莱布尼茨公式计算,当你不知道这些的时候可能花一年的功夫也没有丝毫进展.我当年就是深有感触的,我是在高一入学前的暑假自学的微积分,高一的时候遇芹搏到一个定积分∫[0,π/2]dx/√(sinx),开始不知道这是一个超越积分,所以高一只要有空余时间我就会计算这个定积分,直到高二学完伽马函数后才计算出其值为(Γ(1/4))^2/(2√(2π)),并由此得出不定积分∫dx/√(sinx)也是超越积分.常见的超越积分还有很多,尤其像那种三角函数带根号的,多半都是超越的,自学时要注意
吉禄学阁

2023-05-22 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62489

向TA提问 私信TA
展开全部
  • 例如计算不定积分∫x²3√1-xdx

解:原式=3∫x²√1-x

令√1-x=t

x=1-t²

dx=-2tdt

原式=3∫(1-t²)正慎²t(-2t)dt

=3∫(-2t²+4t^4-2t^6)dt

=-6∫t²dt+12∫t^4dt-6∫t^6dt

=-2t^3+12/5t^5-6/7t^7+c

=-2√(1-x)^3+12/5√(1-x)^5-6/7√(1-x)^7+c。

  • 例如本题不定积分计算过程如下:

∫(1-3x)^6dx

=(-1/3)∫(1-3x)^6d(1-3x)

=-1/3*(1-3x)^7*(1/7)+C

=-1/21*(1-3x)^7+C。

  • 例如∫(sinx)^4dx

=∫[(1/2)(1-cos2x]^2dx

=(1/4)∫岁迹[1-2cos2x+(cos2x)^2]dx

=(1/4)∫[1-2cos2x+(1/2)(1+cos4x)]dx

=(3/8)∫dx-(1/2)∫cos2xdx+(1/8)∫cos4xdx

=(3/8)∫dx-(1/4)∫cos2xd2x+(1/32)∫cos4xd4x

=(3/8)x-(1/4)sin2x+(1/32)sin4x+C。

  • 不定积分概念

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求乎清并已知函数的不定积分的过程叫做对这个函数进行不定积分。

不定积分的计算

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。

需要注意的是不是所有函数都能积分出来,同时各种方法可以用其一也可以多种方法综合应

用。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式