常微分方程解法
1个回答
展开全部
1.可分离变量的微分方程(一阶)
这类微分方程可以变形成如下形式:f ( x ) d x = g ( y ) d y f(x)dx=g(y)dyf(x)dx=g(y)dy两边同时积分即可解出函数,难度主要在于不定积分,是最简单的微分方程。
2.一阶齐次(非齐次)线性微分方程(一阶)形如d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x)、dxdy+P(x)y=Q(x)的方程叫做一阶线性微分方程,若Q ( x ) Q(x)Q(x)为0,则方程齐次,否则称为非齐次。
解法:直接套公式:y ( x ) = e − ∫ P ( x ) d x ( ∫ e ∫ P ( x ) d x Q ( x ) d x + C ) y(x)=e^{-\int{P(x)}dx}(\int{e^{\int{P(x)dx}}Q(x)}dx+C)y(x)=e −∫P(x)dx (∫e ∫P(x)dxQ(x)dx+C)。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询