泰勒公式求解偏微分方程

 我来答
职场小能手Y1t
2022-11-11 · TA获得超过384个赞
知道小有建树答主
回答量:2021
采纳率:100%
帮助的人:32.4万
展开全部

泰勒公式求解偏微分方程如下:

u(t)=\sum_{n=0}^{\infty}=\frac{((\frac{\partial}{\partial x})^2t)^n}。{n!}=\sum_{n=0}^{\infty}=\frac{t^n}{n!}\frac{\partial^{2n}}{\partial x^{2n}}(x^2)。当 n=0,n=1 时可分别求得相应值,相加得 u(t)=x^2+2t ,带入检验,满足初值条件,因此 u(t)=x^2+2t。

泰勒公式是一个用函数在某点的信息描述其附近取值的公式,得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。

它来自于微积分的泰勒定理,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式