幂函数收敛区间和收敛域有什么不同?
一、概念不同
收敛域是函数级数章节的概念,表示函数级数全体收敛点的集合,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
收敛区间是幂级数章节的概念,它就是开区间(-R,R),R为收敛半径。
二、区间开闭不同
收敛域:可以是开区间也可以是闭区间。要判断级数的绝对收敛半径、端点处的收敛情况、端点是否可取,可能是开区间,可能是闭区间或半开半闭,以此确定收敛域。
收敛区间:开区间。表示为(-R,R)的开区间,不用讨论收敛半径和端点处情况。
三、结论的判断不同
收敛区间直接根据收敛半径而得,收敛域是讨论收敛区间两端点收敛性后的结论。收敛区间可能同于收敛域,可能是收敛域的子集。
扩展资料
性质
正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增);
负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。