
二次函数的意义
二次函数的意义如下:
在数学中,二次函数最高次必须为二次, 二次函数(quadratic function)表示形式为y=ax²+bx+c(a≠0)的多项式函数。二次函数的图像是一条对称轴平行于y轴的抛物线。
二次函数表达式y=ax²+bx+c的定义是一个二次多项式,因为x的最高次数是2。
如果令二次函数的值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
二次函数 的意义:一般地,自变量x和因变量y之间存在如下关系:
1:y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a) (若给出抛物线上两点及另一个条件,通常可设一般式)
2:顶点式:y=a(x-h)^2+k或y=a(x+m)^2+k (若给出抛物线的顶点坐标或对称轴与最值,通常可设顶点式),顶点坐标为(h,k)或(-m,k)
3:交点式(与x轴):y=a(x-x1)(x-x2) (若给出抛物线与x轴的交点及对称轴与x轴的交点距离或其他一的条件,通常可设交点式) 重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。