三角矩阵求逆矩阵怎么做?
如果A+B可逆,那么设它的逆为C矩阵,E为单位矩阵,求解
(A+B)C=E
C(A+B)=E
即可
详细介绍:
(A+B)B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)
=[AB^(-1)+E]{A[A^(-1)+B^(-1)]}^(-1)
=[E+AB^(-1)][E+AB^(-1)]]^(-1)
=E
B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)(A+B)
={[A^(-1)+B^(-1)]B}^(-1)[E+A^(-1)B]
=[A^(-1)B+E]^(-1)[A^(-1)B+E]
=E
所以(A+B)^(-1)=B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)
扩展资料:
矩阵的加法满足下列运算律(A,B,C都是同型矩阵):
应该注意的是只有同型矩阵之间才可以进行加法
矩阵的数乘满足以下运算律:
矩阵的加减法和矩阵的数乘合称矩阵的线性运算。
n×n的方块矩阵A的一个特征值和对应特征向量是满足 的标量以及非零向量 。其中v为特征向量, 为特征值。
A的所有特征值的全体,叫做A的谱 ,记为 。矩阵的特征值和特征向量可以揭示线性变换的深层特性。
在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。若 ,则 的矩阵称为上三角矩阵,若 ,则 的矩阵称为下三角矩阵 。三角矩阵可以看做是一般方阵的一种简化情形。