可微为什么推不出偏导数连续

 我来答
濒危物种1718
2022-10-10 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6771
采纳率:100%
帮助的人:48.1万
展开全部
如果一个函数在某点偏导数存在,且连续,那么在该点可微,这个是函数可微的条件,那么就知道函数不一定是在任何一点偏导数连续,故函数可微推不出偏导数各点连续。

扩展资料

  设函数y= f(x),若自变量在点x的`改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A为不依赖Δx的常数,ο(Δx)是比Δx高阶的无穷小。则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x= x0时,则记作dy∣x=x0。

  必要条件:

  若函数在某点可微分,则函数在该点必连续。

  若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

  充分条件:

  若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式