平移、位似、旋转、轴对称的异同
展开全部
平移、旋转和轴对称是最基本的三种变换,一个图形不改变它的形状和大小,从一个位置变换到另一个位置,不外乎经过这三种变换.
平移是将一个图形从一个位置变换到另一个位置,平移过程中,各对应点的“前进方向”保持平行,旋转是一个图形绕着一个定点旋转一定的角度,旋转变换和平移都不改变图形的形状和大小,各对应点之间的距离也保持不变,所以这样的变换又叫保距变换.
轴对称虽然也保持变换前后图形的形状和大小不变,但变换前后对应点的位置发生了变化.
交待清楚一件事一般需要说清谁?做什么?怎么做?分析平移、旋转和轴对称,也可以从这几个方面入手.
要说清平移,要素有三个:1.基本图形——是什么图形发生了平移?2.方向:向什么方向发生了平移;3.距离:平移了多远?如上图中第一步变换,基本图形三角形A向右平移了两个单位.
旋转的要素要有四个:1. 基本图形——是什么图形发生了旋转?2.旋转中心——是绕哪 个点旋转的;3,方向:向什么方向发生了旋转,是顺时针还是逆时针?4.角度:旋转了多大的角度?
轴对称的要素要有二个:1. 基本图形——是以什么图形为基本图形进行变换?2.对称轴——以哪条线为对称轴作变换?在上面的第(4)步变换中,四个基本的三角形分别以它们的斜边为对称轴,作轴对称变换得到最初的图形.
在教学中要让学生体会到变换中的要素,一是要借助于操作将思考与操作结合起来,如在关的图形中让学生将三角形的纸片放在方格纸中向上推移两个格,可以边推边说,一边操作一边思考.二要借助于方格纸进行操作和学习.方格纸呈现了平行和垂直的网络线,即可以看出变换的方向,又可以看出变换的距离,直观方便.便于学生理解基中的数量关系.
顺便提一句,旋转中心不一定必须是基本图形上的顶点.可以是图形内部的点,也可以是图形上的点.有的老师认为旋转中心就是图形的顶点是不全面的.
平移是将一个图形从一个位置变换到另一个位置,平移过程中,各对应点的“前进方向”保持平行,旋转是一个图形绕着一个定点旋转一定的角度,旋转变换和平移都不改变图形的形状和大小,各对应点之间的距离也保持不变,所以这样的变换又叫保距变换.
轴对称虽然也保持变换前后图形的形状和大小不变,但变换前后对应点的位置发生了变化.
交待清楚一件事一般需要说清谁?做什么?怎么做?分析平移、旋转和轴对称,也可以从这几个方面入手.
要说清平移,要素有三个:1.基本图形——是什么图形发生了平移?2.方向:向什么方向发生了平移;3.距离:平移了多远?如上图中第一步变换,基本图形三角形A向右平移了两个单位.
旋转的要素要有四个:1. 基本图形——是什么图形发生了旋转?2.旋转中心——是绕哪 个点旋转的;3,方向:向什么方向发生了旋转,是顺时针还是逆时针?4.角度:旋转了多大的角度?
轴对称的要素要有二个:1. 基本图形——是以什么图形为基本图形进行变换?2.对称轴——以哪条线为对称轴作变换?在上面的第(4)步变换中,四个基本的三角形分别以它们的斜边为对称轴,作轴对称变换得到最初的图形.
在教学中要让学生体会到变换中的要素,一是要借助于操作将思考与操作结合起来,如在关的图形中让学生将三角形的纸片放在方格纸中向上推移两个格,可以边推边说,一边操作一边思考.二要借助于方格纸进行操作和学习.方格纸呈现了平行和垂直的网络线,即可以看出变换的方向,又可以看出变换的距离,直观方便.便于学生理解基中的数量关系.
顺便提一句,旋转中心不一定必须是基本图形上的顶点.可以是图形内部的点,也可以是图形上的点.有的老师认为旋转中心就是图形的顶点是不全面的.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询