求极限lim(1/x-cot x )?
1个回答
展开全部
无论左极限,还是右极限,都是0.
lim [1/x - cotx]
x→0+
=lim (sinx - xcosx)/(xsinx) (0/0 型不定式)
x→0+
=lim (cosx - cosx + xsinx)/(sinx + xcosx) (使用了罗毕达法则)
x→0+
=lim (xsinx)/(sinx + xcosx)
x→0+
=lim 1/(1/x + cosx/sinx) (分子分母除以xsinx)
x→0+
= 1/(+∞ + ∞)
= 0
lim [1/x - cotx]
x→0-
=lim (sinx - xcosx)/(xsinx) (0/0 型不定式)
x→0-
=lim (cosx - cosx + xsinx)/(sinx + xcosx) (使用了罗毕达法则)
x→0-
=lim (xsinx)/(sinx + xcosx)
x→0-
=lim 1/(1/x + cosx/sinx) (分子分母除以xsinx)
x→0-
= 1/(-∞ - ∞)
= 0,1,分开求导,然后相减,结果为0.,0,求极限lim(1/x-cot x )
自己已经算出
lim [1/x - cotx]
x→0+
=lim (sinx - xcosx)/(xsinx) (0/0 型不定式)
x→0+
=lim (cosx - cosx + xsinx)/(sinx + xcosx) (使用了罗毕达法则)
x→0+
=lim (xsinx)/(sinx + xcosx)
x→0+
=lim 1/(1/x + cosx/sinx) (分子分母除以xsinx)
x→0+
= 1/(+∞ + ∞)
= 0
lim [1/x - cotx]
x→0-
=lim (sinx - xcosx)/(xsinx) (0/0 型不定式)
x→0-
=lim (cosx - cosx + xsinx)/(sinx + xcosx) (使用了罗毕达法则)
x→0-
=lim (xsinx)/(sinx + xcosx)
x→0-
=lim 1/(1/x + cosx/sinx) (分子分母除以xsinx)
x→0-
= 1/(-∞ - ∞)
= 0,1,分开求导,然后相减,结果为0.,0,求极限lim(1/x-cot x )
自己已经算出
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询