函数一阶可导就可以用洛必达法则吗?
1个回答
展开全部
这句话总体上是正确的。原因:
1、洛必达法则3个使用条件:分子分母同趋向于0或无穷大;分子分母在限定的区域内是否分别可导;当两个条件都满足时,再求导并判断求导之后的极限是否存在。
2、为什么函数二阶可导却不能用两次洛必达法则? f(x)二阶可导说明存在f(x)二阶导数存在,但它不一定连续,不连续的话二阶导数的极限就不存在,但是f(x)二阶可导说明f(x)一阶导数存在且连续,它的极限也就可以求的。所以只能求一次。
可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询