设x>0,0<α<1,利用最值证明不等式:x^α≦αx+(1-α)

 我来答
天罗网17
2022-07-19 · TA获得超过6200个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.7万
展开全部
令f(x) = x^α - αx - (1 - α) = x^α - αx + (α-1)
f'(x) = αx(α-1)-α = α[x^(α-1)-1]
∵0<α<1
∴-1<α-1<0
0<x<1时,x^(α-1)>1,f'(x)=x^(α-1)-1>0,f(x)单调增
x>1时,x^(α-1)<1,f'(x)=x^(α-1)-1<0,f(x)单调减
当x=1时有极大值f(1) = x^1 - α*1 + α-1 = 0
即f(x) = (x^α - αx) - (1 - α) ≤ 0
∴(x^α - αx) ≤ (1 - α)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式