设x1,x2是方程3x2-4x=-1的两根,不解方程求下列各式的值 (1) ∣x1-x2∣ (2)9x13+13
2个回答
展开全部
x1,x2是方程3x^2-4x+1=0的两根,
所以x1+x2=4/3,x1x2=1/3.
(1)|x1-x2|=√(x1-x2)^2
=√[(x1+x2)^2-4x1x2]
=√(16/9-4/3)
=√(4/9)
=2/3.
(2)x^2=(4x-1)/3,
x^4=[(4x-1)/3]^2
=(16x^2-8x+1)/9
=(64x-16-24x+3)/27
=(40x-13)/27,
x^8=[(40x-13)/27]^2
=(1600x^2-1040x+169)/729
=(6400x-1600-3120x+507)/2187
=(3280x-1093)/2187,
x^13=x^8*x^4*x
=(3280x-1093)(40x-13)x/59049
=(3280x-1093)(121x-40)/177147
=(396880x^2-263453x+43720)/177147
=(1587520x-396880-790359x+131160)/531441
=(797161x-265720)/531441,
9x^13+13=(797161x-265720)/59049+13,
需解方程,题目欠完整。
所以x1+x2=4/3,x1x2=1/3.
(1)|x1-x2|=√(x1-x2)^2
=√[(x1+x2)^2-4x1x2]
=√(16/9-4/3)
=√(4/9)
=2/3.
(2)x^2=(4x-1)/3,
x^4=[(4x-1)/3]^2
=(16x^2-8x+1)/9
=(64x-16-24x+3)/27
=(40x-13)/27,
x^8=[(40x-13)/27]^2
=(1600x^2-1040x+169)/729
=(6400x-1600-3120x+507)/2187
=(3280x-1093)/2187,
x^13=x^8*x^4*x
=(3280x-1093)(40x-13)x/59049
=(3280x-1093)(121x-40)/177147
=(396880x^2-263453x+43720)/177147
=(1587520x-396880-790359x+131160)/531441
=(797161x-265720)/531441,
9x^13+13=(797161x-265720)/59049+13,
需解方程,题目欠完整。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询