∫(sinxcosx)/(sinx+
1个回答
展开全部
∫ (sinxcosx)/(sinx + cosx) dx=(1/2)(- cosx + sinx) - [1/(2√2)]ln|csc(x + π/4) - cot(x + π/4)| + C。C为积分常数。
解答过程如下:
∫ (sinxcosx)/(sinx + cosx) dx
= (1/2)∫ (2sinxcosx)/(sinx + cosx) dx
= (1/2)∫ [(1 + 2sinxcosx) - 1]/(sinx + cosx) dx
= (1/2)∫ (sin²x + 2sinxcosx + cos²x)/(sinx + cosx) dx - (1/2)∫ dx/(sinx + cosx)
= (1/2)∫ (sinx + cosx)²/(sinx + cosx) dx - (1/2)∫ dx/[√2sin(x + π/4)]
= (1/2)∫ (sinx + cosx) dx - [1/(2√2)]∫ csc(x + π/4) dx
= (1/2)(- cosx + sinx) - [1/(2√2)]ln|csc(x + π/4) - cot(x + π/4)| + C
解答过程如下:
∫ (sinxcosx)/(sinx + cosx) dx
= (1/2)∫ (2sinxcosx)/(sinx + cosx) dx
= (1/2)∫ [(1 + 2sinxcosx) - 1]/(sinx + cosx) dx
= (1/2)∫ (sin²x + 2sinxcosx + cos²x)/(sinx + cosx) dx - (1/2)∫ dx/(sinx + cosx)
= (1/2)∫ (sinx + cosx)²/(sinx + cosx) dx - (1/2)∫ dx/[√2sin(x + π/4)]
= (1/2)∫ (sinx + cosx) dx - [1/(2√2)]∫ csc(x + π/4) dx
= (1/2)(- cosx + sinx) - [1/(2√2)]ln|csc(x + π/4) - cot(x + π/4)| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询