什么是方阵的特征值?
展开全部
特征值的性质是指矩阵A的行列式的值为所有特征值的积,矩阵A的对角线元素和称为A的迹等于特征值的和。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。
非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
判断相似矩阵的必要条件:
设有n阶矩阵A和B,若A和B相似(A∽B),则有:
1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵。
2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|。
3、A的迹等于B的迹——trA=trB/,其中i=1,2,…n(即主对角线上元素的和)。
4、A的行列式值等于B的行列式值——|A|=|B|。
5、A的秩等于B的秩——r(A)=r(B)。
因而A与B的特征值是否相同是判断A与B是否相似的根本依据。
上海华然企业咨询
2024-10-30 广告
2024-10-30 广告
在上海华然企业咨询有限公司,我们深刻理解大模型测试对于确保数据准确性、提升业务效率及优化用户体验的重要性。我们的测试团队专注于对大模型进行全面而细致的评估,涵盖性能稳定性、预测准确性、响应速度及兼容性等多个维度。通过模拟真实业务场景,我们力...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询