如何用分部积分法求sin2x?

 我来答
清宁时光17
2023-06-25 · TA获得超过1.4万个赞
知道大有可为答主
回答量:7191
采纳率:100%
帮助的人:42万
展开全部

把SIN2 X利用二倍角公式可以化作(1-COS 2X)/2,再进行积分


sin平方x的积分= 1/2x -1/4 sin2x + C(C为常数)。

解答过程如下:

解:∫(sinx)^2dx

=(1/2)∫(1-cos2x)dx

=(1/2)x-(1/4)sin2x+C(C为常数)

扩展资料:

分部积分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式